Estimating a Bounded Normal Mean Under the LINEX Loss Function
author
Abstract:
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of minimax estimation of θ In this paper, by constructing a dominating class of estimators, we show that the maximum likelihood estimator is inadmissible. Then, as a competitor, the Bayes estimator associated with a uniform prior on the interval [−m,m] is proposed. Finally, considering risk performance as a comparison criterion, the estimators are compared and depending on the values taken by θ in the interval [−m,m], the appropriate estimator is suggested.
similar resources
estimating a bounded normal mean under the linex loss function
let x be a random variable from a normal distribution with unknown mean θ and known variance σ2. in many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. as the usual estimator of θ, i.e., x under the linex loss function is inadmissible, finding some competitors for x becomes worthwhile. the only study in the literature considered the problem of min...
full textEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
full textEstimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
full textestimating a bounded normal mean relative to squared error loss function
let be a random sample from a normal distribution with unknown mean and known variance the usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. in many practical situations, is known in advance to lie in an interval, say for some in this case, the maximum likelihood estimator changes and d...
full textEstimation of the Multivariate Normal Mean under the Extended Reflected Normal Loss Function
full text
Estimation of Scale Parameter Under a Bounded Loss Function
The quadratic loss function has been used by decision-theoretic statisticians and economists for many years. In this paper the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...
full textMy Resources
Journal title
volume 24 issue 2
pages 157- 164
publication date 2013-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023